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Abstract

We investigate and compare the approaches of Carr & Lee [7] and Cox & Wang

[12, 13] (the latter based on Root and Rost embeddings) for finding robust,

model-independent bounds on the no-arbitrage prices of variance calls, and the

associated sub- and superhedging strategies. The approaches are first compared

from a theoretical viewpoint, and a correspondence between the subhedging

strategies, based on a remark in Cox & Wang [13], is explicitly characterised.

Next, the approaches are numerically implemented and tested on Black-Scholes

and Heston models, and the obtained price bounds are compared and discussed.

We find that for the models we implement, the Carr & Lee lower bounds are

very close to the corresponding Root bounds, and that finding the Cox & Wang

upper bound requires careful handling of the asymptotics of the Rost barrier.
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Chapter 1. Introduction

1.1 Project motivation

Derivatives on the realised variance 〈logS〉T of the price process S of an underlying as-

set have become increasingly common instruments for limiting volatility risk [7], and an

important question is how to price and hedge such derivatives.

The traditional approach to derivatives pricing relies on the postulation of a stochastic

model for the price process S of the underlying asset, imposing some dynamics for S under

a risk-neutral pricing measure Q. The time-t price Vt of an option is then given by the

expression

Vt = EQ
t [Dt,TFT ], (1.1)

where FT is a (generally path-dependent) functional of (St)0≤tT , and Dt,T is the discount

factor from time T to t [32]. Standard vanilla European options are written on the terminal

value of an underlying asset, ST . For example, the payoff of a European call option with

strike price K and maturity T is given by

F (ST ) = (ST −K)+. (1.2)

These derivatives are well-established and liquidly traded on the market, and their prices

are determined by the principle of supply and demand. The question of derivative pricing

is primarily concerned with the less liquidly traded exotic derivatives [32].

Ob lój [44] presents three points of criticism against the traditional approach explained

above: (i) the models only incorporate information such as prices of liquidly traded options

through the act of calibration, and the models need to be frequently recalibrated; (ii) strong

assumptions are made about e.g. the dynamics of the prices process; and (iii) the models fail

to incorporate real world effects such as transactions costs and counterparty risk. Moreover,

for models of the above types calibrated to the same market data, different models may

yield different prices for the same exotic derivative [32].

An alternative approach to the classic one is to find robust and model-independent

bounds on the no-arbitrage prices of derivatives. This robust approach eliminates, or at

least minimises, model risk by imposing only weak modelling assumptions. In situations

where the price of an exotic derivative might not be uniquely determined from the market

data, the robust pricing methods allow us to at least bound the range of no-arbitrage prices,

and the size of the no-arbitrage price range for an exotic derivative can provide some insight

into the model risk associated with traditional pricing of it [7].
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1.2 Project aim

The aim of this project is to investigate and compare the robust approaches found in

Carr-Lee [7] and Cox-Wang [12, 13] for determining upper and lower bounds on the no-

arbitrage price of options on realised variance. This will be done through both theoretical

and numerical investigations of the two approaches.

1.3 Report outline

In Chapter 2 we provide a theoretical background and introduce relevant concepts and

ideas. Next, in Chapter 3 we present specifically the approaches found in Carr & Lee [7]

and Cox & Wang [12, 13] respectively, both of which are our main area of interest. After

that, in Chapter 4, we numerically implement the methods and strategies from Carr & Lee

and Cox & Wang, and compare the performance of these. Finally, in Chapter 5 we present

the conclusions that we draw from our findings.
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Chapter 2. Theoretical background

2.1 Notation used

We let St denote the time-t value of the price process of the underlying asset for t ≥ 0.

The notation 〈·〉 is used for quadratic variation processes, and x+ := max(x, 0). Pricing

is done using the expectation under a pricing measure Q as EQ
t [·] := EQ[·|Ft], where Ft

is the time-t filtration, and we will generally just write Et instead of EQ
t when it is clear

from the context what measure is used, with E0 = E being the unconditional expectation.

Unless otherwise specified, W is a standard Brownian motion, and Z a geometric Brownian

motion. ν will be used for the initial (time-0) distribution of a stochastic process, and µ

denotes the distribution of the process at some future time (usually the maturity of an

option). supp(χ) is the support of the distribution χ, and L(X) is the law of the random

variable X. U([a, b]) is the uniform distribution on the interval [a, b], N (µ, σ2) the normal

distribution with mean µ and variance σ2, and δa(x) := δ(x−a) is the Dirac delta function.

Ct(K) and Pt(K) are the time-t values of European calls and puts on ST with strike K.

For any domain A, C(A) is the class of functions that are continuous on A.

2.2 Traditional models

One of the fundamental classical models for derivatives pricing is that of Black-Scholes [2],

which Merton [39] contributed to. In the Black-Scholes model, the dynamics of the price

process are given by
dSt
St

= rdt+ σdWt, (2.1)

where r is the (constant) interest rate, σ the (constant) volatility, and Wt a Q-Brownian

motion. While this model is useful for its simplicity and tractability, it fails to capture many

observed real-world phenomena, such as transaction costs, non-constant interest rates and

volatilities, limitations on the liquidity etc. [51]. There are several extensions to this model

that allow for a richer description of the asset dynamics by e.g. allowing for non-constant

parameters in the stochastic differential equation (SDE) (2.1). These include various forms

of local volatility [15, 20, 25], stochastic volatility [31, 34, 49], and stochastic-local volatility

models [30, 36, 52]. An example of such an extension is the stochastic volatility model

introduced by Heston [31], in which the variance vt follows a Cox-Ingersoll-Ross process [14],
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and the price process S has the risk-neutral dynamics

dSt = rStdt+
√
vtStdWt,

dvt = κ[θ − vt]dt+ ς
√
vtdŴt,

(2.2)

where r is a (constant) interest rate, κ > 0 governs the speed of reversion to level θ > 0,

and ς > 0 is the volatility of the variance process vt, which has initial value v0 > 0. If the

Feller condition 2κθ > ς2 is satisfied, then the variance process will always stay positive [1].

The two Brownian motions W and Ŵ have correlation ρ.

2.3 Variance swaps and options

Consider an asset with dynamics

dSt
St

= rtdt+ σtdWt, (2.3)

where rt is a deterministic interest rate process, and σt > 0 is some volatility process, which

in general is stochastic (it could also be a deterministic process, and even a constant as in

the Black-Scholes model). Then the realised variance of the price process S at time T is

given by the expression ∫ T

0
σ2t dt =

∫ T

0

d〈S〉t
S2
t

= 〈logS〉T . (2.4)

Hence, the payoffs of derivatives on realised variance can be expressed as F (〈logS〉T ) or,

if we define X := logS, as F (〈X〉T ), for some payoff function F . In order to simplify the

notation in our later arguments, we will make the assumption of zero interest rates in (2.3)

for the remainder of this report. This does not result in any loss of generality compared

to the case with arbitrary deterministic interest rates, since deterministic interest rates do

not impact the quadratic variation [7]. To see this, consider a modified price process with

dynamics dS̃/S̃ = σtdWt. We have

logST = logS0 +

∫ T

0
rtdt+

∫ T

0
σtdWt −

∫ T

0

σ2t
S2
t

dt, (2.5)

and thus

〈log S̃〉T =

∫ T

0
σ2t dt = 〈logS〉T , (2.6)

so the two processes have the same realised variance. Moreover, under the assumption

r = 0, the prices of derivatives will be given by their expected payoffs without the need

to discount. Note that stochastic interest rates, on the other hand, could indeed affect

the quadratic variation of the price process, so some of the results presented here will only

extend to settings with deterministic rates.

In reality, contracts are usually not written on the continuous time realised variance as

specified in (2.4), but rather on a discretised version thereof [9,12], often of the form [6,17]

RVT =
N∑
i=1

(
log

Sti
Sti−1

)2

, (2.7)
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for some sequence of times ti with ti = 0 and tN = T , usually using a daily frequency. For

studies on the deviations between the continuous and discrete time definitions of realised

variance, see e.g. Bondarenko [3], Jarrow et al. [35], and Hobson & Klimmek [33].

For the simple case of a so-called variance swap, we have the payoff

F (〈X〉T ) = 〈X〉T −Q, (2.8)

for some constant Q. Using Itô’s lemma on the process log(ST ), we obtain

log(ST ) = log(S0) +

∫ T

0

1

St
dSt −

1

2
〈X〉T (2.9)

or rearranged

〈X〉T = −2 log(ST /S0) + 2

∫ T

0

1

St
dSt. (2.10)

Hence, as shown by Dupire [24] and Neuberger [42], we can perfectly replicate the realised

variance 〈X〉T by employing a trading strategy consisting of a claim on a log-contract with

payoff −2 logST /S0, and self-financing continuous trading so that we are long 2/St shares

[9]. Using integration by parts twice (see e.g. Appendix 1 in [8]), any twice differentiable

function F (x) may be written in the form

F (x) = F (x0) + F ′(x0)
[
(x− x0)+ − (x0 − x)+

]
+

∫ x0

0
F ′′(K)(K − x)+dK +

∫ ∞
S0

F ′′(K)(x−K)+dK,
(2.11)

for some constant x0 ≥ 0. Then, under the assumption that European put and call options

with maturity T are available at all strikes K, the log-contract can be perfectly replicated

using the following decomposition (see also Demeterfi [19])

log
ST
S0

=
ST − S0
S0

−
∫ S0

0

1

K2
(K − ST )+dK −

∫ ∞
S0

1

K2
(ST −K)+dK. (2.12)

Thus, we are able to replicate variance swaps using bonds, stocks, and vanilla European

options. In particular, using (2.10) and (2.12), the price of the realised variance will be

given by (recall that we price using expectation)

Et〈X〉T = −2Et log
ST
S0

= −2
St − S0
S0

+ 2

∫ S0

0

1

K2
Pt(K)dK + 2

∫ ∞
S0

1

K2
Ct(K)dK. (2.13)

In addition, there are variance options, which are options on the realised variance of the

process S. An example is the (spot-starting) variance call with payoff

(〈X〉T −Q)+ =

(∫ T

0

d〈S〉t
S2
t

−Q
)+

=

(∫ T

0
σ2t dt−Q

)+

. (2.14)

Such derivatives prove to be more challenging to price, as the choice of model will affect

what price the variance option is assigned. There are also forward-starting variance calls

with payoff (〈X〉T − 〈X〉θ)+ for some θ ∈ [0, T ).

Although we frequently use the term “variance options”, we mainly consider the pricing

of variance calls. Since we are able to robustly replicate the variance swap 〈X〉T −Q using
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(2.10), once we have obtained price bounds for the call options we can easily find bounds

for the put options by using the put-call parity for the payoffs

(Q− 〈X〉T )+ = (〈X〉T −Q)+ +Q− 〈X〉T . (2.15)

Hence, there is no loss of generality in focusing on the case of call options.

Now, let µ be the distribution of the underlying at maturity, i.e. ST ∼ µ. Using the

Breeden-Litzenberger [4] formula (assuming Ct is twice differentiable)

µ(dK) =
∂2

∂K2
Ct(K)dK, (2.16)

the distribution µ can be recovered from the call prices observed in the market. We then

consider all models under which the price process is a martingale with distribution µ at

maturity: the family of admissible models that are consistent with the market data. To

robustly bound the no-arbitrage price, we need to determine the range of prices that these

models produce, and in particular the minimal and maximal prices.

2.4 Skorokhod embedding problem

One of the challenges of robust pricing is to determine the extremal prices from the family

of admissible models, and to characterise the associated martingale price processes. One

approach is to relate the pricing problem to the Skorokhod embedding problem (SEP hence-

forth). The SEP, originally formulated and solved by Skorokhod [50], is defined as:

Definition 2.1. Skorokhod embedding problem. Given a stochastic process Y =

(Yt)t≥0 and a measure µ, find a minimal stopping time τ such that the stopped process Yτ

has L(Yτ ) = µ.

Minimal in Definition 2.1 means that for every stopping time ρ ≤ τ such that Yρ ∼ µ

we have ρ = τ almost surely [32]. Solutions to the SEP above are said to embed µ in Y ,

and we denote by SEP (Y, µ) the set of solutions to the SEP that embed the distribution µ

in the process Y . In general, the process Y may have any initial distribution Y0 ∼ ν, with

Y0 ∼ δ0 being a special case. By Monroe [40] we have:

Proposition 2.2. (Monroe [40]) For any stopping time τ there is a minimal stopping

time θ ≤ τ such that L(Wθ) = L(Wτ ).

By the results of Dambis [16] and Dubins & Schwarz [23], every continuous local mar-

tingale M is equivalent to a time-changed Brownian motion Mt = W〈M〉t . Specifically, for

the local martingale Mt =
∫ t
0 dSt/St we have 〈M〉t = 〈X〉t, and we may thus write [7, 32]

Mt = W〈M〉t = W〈X〉t . (2.17)

Furthermore, from (2.9) we have the dynamics

Xt = X0 +Mt −
1

2
〈X〉t, (2.18)
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and hence, combined with (2.17), we obtain

St = exp(Xt) = exp

(
X0 +Mt −

1

2
〈X〉t

)
= S0 exp

(
W〈X〉t −

1

2
〈X〉t

)
= Z〈X〉t , (2.19)

where Zt is the (martingale) geometric Brownian motion given by

Zt = S0 exp

(
Wt −

1

2
t

)
. (2.20)

We then have Z〈X〉T = ST ∼ µ, and so 〈X〉T embeds the distribution µ in the process Z,

i.e. 〈X〉T ∈ SEP (Z, µ). Similarly, for each stopping time τ ∈ SEP (Z, µ), we can find an

associated continuous martingale process through the construction

S̃t = Zτ∧ t
T−t

. (2.21)

This martingale process satisfies both S̃0 = S0 and S̃T = Zτ ∼ µ. Moreover, the payoff of

a variance call for this martingale process is

(〈log S̃〉T −Q)+ = (〈logZ〉τ −Q)+ = (〈W 〉τ −Q)+ = (τ −Q)+. (2.22)

We find that every solution τ ∈ SEP (Z, µ) will be equivalent to some possible martingale

price process S̃ for the underlying, and thus correspond to some expected payoff and price

for the variance call. Hence, we can characterise the admissible models in terms of their

associated stopping times, and bound the no-arbitrage price by solving

inf
τ∈SEP (Z,µ)

E(τ −Q)+ and sup
τ∈SEP (Z,µ)

E(τ −Q)+, (2.23)

for the lower and upper bounds respectively [32].

2.5 Barriers and hitting times

Consider the problem of finding a minimal stopping time τR that yields a lower bound on

the price, i.e. a stopping time that minimises E[(τ −Q)+]. Such a stopping time was first

described by Root [46], its optimality proven by Rost [48], and it is one of the main focuses

of this section. We first need to introduce the concept of a barrier, as in Definition 2.3

below.

Definition 2.3. (Root [46]) A barrier (or Root barrier) is a subset B of [0,+∞] ×
[−∞,+∞] satisfying

1. B is closed,

2. (+∞, x) ∈ B for all x ∈ [−∞,+∞],

3. (t,±∞) ∈ B for all t ∈ [0,+∞],

4. if (t, x) ∈ B then (s, x) ∈ B whenever s > t.

7



We may then formally define the hitting time (see e.g. Protter [45]) τB of a barrier B
for a stochastic process Y as τB = inf{t > 0 : (t, Yt) ∈ B}, and we will call such a hitting

time a Root stopping time, or a Root embedding if the hitting time is a solution to the SEP.

See Figure 2.1a for an example of a Root barrier.

(a) (b)

Figure 2.1: Examples of (a) a Root barrier, and (b) a Rost barrier (grey regions). The
stochastic process (blue) hits the barriers at the red marker.

As shown by Monroe [40], all hitting times are minimal, and all stopping times with

finite expectation are minimal. Thus, embeddings defined through barriers will give minimal

solutions to the SEP. Furthermore, by Loynes [38], every barrier B can be expressed in the

form B = {(x, t) : t ≥ R(x)} for some lower semi-continuous barrier function R : R→ [0,∞],

and the Root barrier is unique (see Theorem 1 in Loynes [38]).

A relevant concept for our purposes is that of minimal residual expectation, see Definition

2.4. It was first introduced by Dinges [21] for the discrete time case, and generalised to

continuous time by Rost [48] (here we use the definition from Cox & Wang [13]).

Definition 2.4. (Cox & Wang [13]) A stopping time τ∗ ∈ SEP (Y, µ) is said to be

of minimal residual expectation (with respect to µ) if, for each t ∈ R+, it minimises the

quantity

E(τ − t)+ = E
∫ τ

τ∧t
ds =

∫ ∞
t

P(τ > s)ds, (2.24)

over all τ ∈ SEP (Y, µ).

Furthermore, any convex function F can be written in terms of positively weighted

functions of the form (x − K)+ [13, 32], and hence, as first shown by Dinges [21], any

solution of minimal residual expectation also minimises the quantity E[F (τ)] for all convex

functions F .

With Definition 2.5 of the potential of a distribution, we also get Theorems 2.6 and 2.7,

first shown by Rost [48]. We here use the definition of the potential from Cox & Wang [13],

which differs from that of Rost [48] by a minus sign. Moreover, in contrast with Rost [48],

we use ν for the initial distribution and µ for the target distribution.
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Definition 2.5. (Cox & Wang [13]) The potential Uχ of a distribution χ is given by

Uχ(x) := −
∫
R
|y − x|χ(dy). (2.25)

Theorem 2.6. (Rost [48]) If a measure µ satisfies Uν ≥ Uµ, then there exists a stopping

time of minimal residual expectation (with respect to µ).

Theorem 2.7. (Rost [48]) Every Root stopping time τ is of minimal residual expectation

(with respect to µ).

Note that the condition Uν ≥ Uµ in Theorem 2.6 implies that the distributions ν and µ

have the same mean [10]. In addition, the corollary to Theorem 3 in Rost [48] says that for

processes Y with regular one-point sets, any embedding with minimal residual expectation is

also a Root stopping time. Hence, under appropriate assumptions on the target distribution

µ and the process Y , we are ensured that a solution to the SEP (Y, µ) of minimal residual

expectation can be obtained using Root barriers. Using the fact that if E[τ ] < ∞ then

E[τ ] =
∫
x2µ(dx) for all embeddings τ [32], and that the Root time minimises E[F (τ)] for

F convex, the Root stopping time is the embedding with minimal variance E[(τ − E[τ ])2].

Since the Root stopping time τR minimises the expectation E(τR − Q)+, we may use

it to obtain a lower bound on the price of a variance option with payoff (
∫ T
0 σ2t dt − Q)+.

Nonetheless, the difficulty of finding an explicit characterisation of the Root barrier remains,

and so any attempts to find price bounds using the Root embedding must overcome this

challenge.

So far, we have outlined how to use the Root embedding to find a lower bound on the

price of a variance call. In an analogous fashion, we will be able to use a reverse barrier

B (see Definition 2.8) to find upper price bounds. The corresponding stopping time was

first introduced by Rost [47], and Chacon [10] showed how reversed barriers could be used

to characterise these stopping times. Similarly to the Root barrier, the reverse barrier

can be formulated in the form B = {(t, x) : t ≤ R(x)} for some reverse barrier function

R : R→ R+ [32]. See Figure 2.1b for an example of a reverse barrier.

Definition 2.8. (Ob lój [43]) A reverse barrier (or Rost barrier) is a subset B of [0,+∞]×
[−∞,+∞] satisfying

1. B is closed,

2. (0, x) ∈ B for all x ∈ [−∞,+∞],

3. (t,±∞) ∈ B for all t ∈ [0,+∞],

4. if (t, x) ∈ B then (s, x) ∈ B whenever s < t.

By the results of Rost [47], if a hitting time τR of a reverse barrier B solves the SEP,

then it maximises the residual expectation E(τ − t)+ for all t ∈ R+ [32, 43]. We will

refer to the hitting time of a reverse barrier as a Rost stopping time or Rost embedding,
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in analogy with the Root stopping times. Under the assumptions of Theorem 2.6 and the

additional assumption that the initial distribution ν and the target distribution µ have

disjoint support, we are ensured the existence of a reverse barrier B such that its hitting

time τR is in SEP (Z, µ) (the case where the distributions are not disjoint can be handled

using external randomisation) [12].

By similar arguments as for the Root times above, the Rost hitting time τR is of finite

expectation and maximises the quantity E[F (τ)] for all non-negative convex functions F [12],

hence also being the embedding of maximal variance. We may thus use Rost stopping times

to find upper bounds on the no-arbitrage price of variance options.

Intuitively, we can think of the Root and Rost embeddings as extremal embeddings,

where the Root barrier stops the process Zt at a relatively narrow cluster of times (hence

the low variance), and the Rost barrier stops the process more evenly spread out over time

(resulting in a higher variance) [7, 27].

2.6 Sub- and superhedging strategies

An alternative approach to bounding the no-arbitrage price of variance options is to consider

general sub-/super-replicating trading strategies, also known as sub-/superhedging strate-

gies. A definition of these is given below:

Definition 2.9. A trading strategy G(t) (G(t) − G(0) being self-financing) is said to (ro-

bustly) sub-replicate/subhedge a derivative F (t) if at all times t ∈ [0, T ] we have G(t) ≤ F (t)

almost surely. Conversely, if we have G(t) ≥ F (t) almost surely for all t ∈ [0, T ], then the

strategy G(t) is said to be a (robust) super-replicating/superhedging strategy of F (t).

By finding sub- and superhedging strategies Gsub, Gsuper that satisfy the pathwise in-

equalities Gsub(t) ≤ F (t) and Gsuper(t) ≥ F (t) respectively, and using the assumed absence

of arbitrage, we may bound the price of F by the prices of Gsub and Gsuper. To see how

such strategies can be used to bound the price, assume that we have a subhedging portfolio

G(t) ≤ F (t). Now, if F is priced lower than G, then go long F and short G to make an ini-

tial profit. At maturity F −G ≥ 0 and so we will have made a risk-free profit, contradicting

our assumption about the absence of arbitrage. The fact that superhedging portfolios give

upper bounds on the price of F follows by similar arguments.

Using sub- and superhedging, we thus have an alternative approach for bounding the

no-arbitrage price of the variance option. If we use strategies for which the inequalities

Gsub(t) ≤ F (t) and Gsuper(t) ≥ F (t) hold on a pathwise basis, we obtain robust price

bounds, since the inequalities do not depend on any particular model for the price process

and are valid for all continous paths.
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Chapter 3. Two approaches for bounds

In this chapter, we focus on two different approaches for bounding the no-arbitrage price

of variance call options: (i) the sub- and superhedging strategies of Carr & Lee [7]; and (ii)

the approach by Cox & Wang [12,13] using the optimality and embedding properties of the

Root and Rost hitting times. The approaches are explained in greater detail below.

3.1 The Carr & Lee approach

In [9], Carr & Lee assume that the price process S of the underlying with reinvested div-

idends is a positive continuous semimartingale on the filtered space (Ω,F , {Ft},P), where

P is the physical probability measure. In this context, Carr & Lee are then able to derive

sub- and superhedging strategies for variance calls, and by arguments similar to those pre-

sented in Section 2.6, they show that the strategies yield lower and upper bounds on the

no-arbitrage price.

(a) Subhedging strategy

The subhedging strategy presented in this section is attributed to Dupire [26], and it was

generalised by Carr & Lee to forward-starting options. The results for spot-starting variance

calls are summarised in Proposition 3.1. Some comments on the functions used in the

proposition are given below.

Proposition 3.1. (Dupire [26]) Let λ : R+ → R be a convex function with left-hand

derivative λy, and its second derivative λyy satisfying

λyy ≤ 2/y2, ∀y ∈ R+ (3.1)

in a distributional sense. In addition, let τQ := inf{t ≥ 0 : 〈X〉t = Q}, and define the

functions

BS(y, v; f) :=

{∫∞
−∞ f(yez) 1√

2πv
exp
(
− (z+v/2)2

2v

)
dz if v > 0,

f(y) if v = 0,
(3.2)

and

Nt :=

{
−BSy(St, Q− 〈X〉t;λ) if t ≤ τQ,
−λy(St) if t > τQ.

(3.3)
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Then for any λ satisfying the above assumptions, the strategy of holding at each time t ∈
[0, T ) the portfolio 

1 claim on λ(ST ),

Nt shares,

−BS(S0, Q;λ) +
∫ t
0 NsdSs −NtSt bonds,

(3.4)

subhedges the payoff
(
〈X〉T − Q

)+
, and its time-0 price −BS(S0, Q;λ) + Eλ(ST ) gives a

lower bound on the no-arbitrage price of the variance call.

Furthermore, define

vanK(y) :=

{
(y −K)+ if K ≥ S0,
(K − y)+ if K < S0,

(3.5)

and for each strike K let I0(K,T ) be the unique dimensionless implied volatility such that

BS(S0, I0(K,T ); vanK) = E vanK(ST ) (3.6)

holds. Then out of all admissible λ, the choice

λ(y) =

∫
{K:I0(K,T )>Q}

2

K2
vanK(y)dK (3.7)

maximises the value of the lower bound.

Note that λ(ST ) is a European claim on ST , and that its price can be determined from

the vanilla call prices C0(K) and put prices P0(K) over all strikes K, which are given by

the market.

By trivially rewriting the function BS using the following change of variables

BS(y, v; f) =

∫ ∞
−∞

f(yez)
1√
2πv

exp

[
− (z + v/2)2

2v

]
dz (3.8)

=

∫ ∞
0

f(w)
1

w
√

2πv
exp

[
− (log(w/y) + v/2)2

2v

]
dw, (3.9)

we clearly see that, as stated in Carr & Lee [7], we can interpret the function BS(y, v; f)

as returning the Black-Scholes prices of a European contract with payoff function f , given

that S0 = y, r = 0, and σ2T = v, with the special case BS(y, v; f) = f(y) if v = 0.

We will now briefly comment on why the function Nt in the subhedging strategy is

divided into two distinct steps, summarising some of the arguments and observations in

Carr & Lee [7]. The overarching idea is that for t ≤ τQ we try to replicate a claim on

−λ(SτQ) using BS(y, v; f), and for t > τQ we dynamically trade to ensure subreplication of

the variance call payoff. In particular, if τQ ≤ T , then using the strategy in Proposition 3.1

we will have replicated −λ(SτQ) by time τQ [7], and thus end up with a portfolio consisting

of a claim on λ(ST ) and a claim on −λ(SτQ). By dynamically trading until maturity T as

specified above, the subhedging strategy will yield a payoff of

λ(ST )− λ(SτQ)−
∫ T

τQ

λy(St)dSt =
1

2

∫ T

τQ

λyy(St)d〈S〉t

≤
∫ T

τQ

d〈S〉t
S2
t

= (〈logS〉T − 〈logS〉τQ)+ = (〈X〉T −Q)+,

(3.10)
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where the first equality follows from Itô’s lemma, and the inequality is a result of the as-

sumption λyy ≤ 2/y2. If on the other hand τQ > T , we do not succeed in replicating−λ(SτQ)

and instead end up at maturity with the payoff −BS(ST , Q − 〈X〉T ;λ) + BS(ST , 0;λ) ≤
0 = (〈X〉T − Q)+, where the inequality holds by the fact that BS is increasing in Q for

convex λ (since Vega is positive for convex European payoffs). In either case, we will always

subreplicate the variance call, and so the strategy subreplicates almost surely.

Now let us direct our attention to the question of selecting a suitable function λ for the

subhedging strategy. First consider the choice

λ(y) = −2 log(y/S0) + 2S−10 (y − S0). (3.11)

This choice clearly satisfies the conditions of Proposition 3.1 (note that λyy = 2/y2), and

using (2.11) we may rewrite λ as

λ(y) =

∫ ∞
0

2

K2
vanK(y)dK. (3.12)

For this choice of λ we get when τQ ≤ T the payoff (here use that λyy = 2/y2)

1

2

∫ T

τQ

λyy(St)d〈S〉t =

∫ T

τQ

d〈S〉t
S2
t

= 〈X〉T −Q,

and when τQ > T the payoff

−BS(ST , Q− 〈X〉T ;λ) +BS(ST , 0;λ) = 〈X〉T −Q.

where we have used the fact that

BS(ST , 0;λ) = λ(ST ) = −2 log(ST /S0) + 2
ST − S0
S0

(3.13)

and (letting p(z) be the probability density function of N (−v/2, v), where v = (Q−〈X〉T ))

BS(ST , Q− 〈X〉T ;λ) =

∫ ∞
−∞

[
− 2 log(ST e

z/S0) + 2
ST e

z − S0
S0

]
p(z)dz

= BS(ST , 0;λ)− 2

∫ ∞
−∞

zp(z)dz = BS(ST , 0;λ) +Q− 〈X〉T .
(3.14)

We thus see that for this specific choice of λ, the subhedging strategy actually allows us to

perfectly replicate a variance swap.

Now, consider the “optimal choice” of λ (attributed to Dupire [26]), specified in Propo-

sition 3.1. The intuition behind why this choice is optimal can be seen by the following

argument. By using e.g. (2.11), we may rewrite the lower bound (see Carr & Lee [7]) as

Eλ(ST )−BS(S0, Q;λ)

=

∫ ∞
0

λyy(K)
[
BS(S0, I0(K,T ); vanK)−BS(S0, Q; vanK)

]
dK.

(3.15)
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Let A := {K : I0(K,T ) > Q}, and differentiate the optimal λ twice to get

λ(y) =

∫
A∩(S0,∞)

2

K2
(y −K)+dK +

∫
A∩(0,S0]

2

K2
(K − y)+dK

λy(y) =

∫
A∩(S0,∞)

2

K2
1{y≥K}dK −

∫
A∩(0,S0]

2

K2
1{K>y}dK

λyy(y) =

∫
A∩(S0,∞)

2

K2
δ(y −K)dK +

∫
A∩(0,S0]

2

K2
δ(y −K)dK

=

∫
A

2

K2
δ(y −K)dK =

2

y2
1{y : I0(y,T )>Q}(y).

We may thus think of the optimal λ as starting from the λ that replicates a variance swap,

and then modifying the domain of strikes that we integrate over in such a way that we only

allow positive contributions to the lower bound (3.15) (recall that BS(y, v;λ) is increasing

in its second argument, so I0(K,T ) > Q is equivalent to a non-negative integrand).

(b) Superhedging strategy

In analogy with the case for the lower bound, Carr & Lee [7] devise a superhedging strategy

in order to find an upper bound on the value of the variance option. Their main results for

the upper bound are presented in Proposition 3.2.

Proposition 3.2. (Carr & Lee [7]). Define the function L∗ by

L∗(y, bd, bu, Q) :=

{
L(y; bd, bu) if y /∈ (bd, bu),

−BP (y, 0; bd, bu, Q) if y ∈ (bd, bu),
(3.16)

where

L(y; bd, bu) :=

{
−2 log(y/bu) + 2 log(bu/bd)

bu−bd (y − bu) if bd 6= bu,

−2 log(y/S0) + 2y/S0 − 2 if bd = bu = S0,
(3.17)

and (letting ζ =
√

1/4− 2iz)

BP (y, q; bd, bu, Q) =

∫ ∞−αi
−∞−αi

√
y/bu sinh(log(bd/y)ζ)−

√
y/bd sinh(log(bu/y)ζ)

2πz2ei(Q−q)z sinh(log(bu/bd)ζ)
dz. (3.18)

Then for each choice of bd and bu with 0 < bd ≤ S0 ≤ bu <∞, the expression

− L∗(S0; bd, bu, Q) + E L∗(ST ; bd, bu, Q) (3.19)

is an upper bound on the no-arbitrage price of the variance call with payoff
(
〈X〉T −Q

)+
.

The Carr & Lee upper bound in Proposition 3.2 is in fact the time-0 value of a strategy

superhedging the variance call payoff
(
〈X〉T −Q

)+
, and so can be taken as an upper bound

on the no-arbitrage price of the variance call.

As stated in Carr & Lee [7], the interpretation of the function BP above is as the

expected value of (〈X〉τβ −Q)+ with τβ being the first time that the price process S exits

the chosen interval (bd, bu). Unlike the case for the subhedging strategy where the optimal

λ is chosen, there remains some room for optimisation over bd and bu, and it is possible

(and likely) that our choice of values for these in our numerical implementation in Chapter

4 will be suboptimal.
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3.2 The Cox & Wang approach

Dupire [27] showed that the Root and Rost barriers can be characterised in terms of solutions

to certain free boundary problems. Cox & Wang further developed the characterisation of

the Root barrier in [13], where they also derived a corresponding subhedging strategy.

In [12], they show how the Rost barrier can be constructed, together with a superhedging

strategy. Gassiat et al. [28] extend the theory for PDE characterisation of Root and Rost

barriers by using viscosity solutions, and we will use some of the results from Gassiat et al.

for our numerical implementation in Chapter 4.

(a) Root embedding and subhedging

In the context of Gassiat et al. [28], let (Ω,F , {Ft},P) be a filtered probability space and

W a standard Brownian motion on this space. Let Z0 ∼ ν be a random variable on R
independent of W , and let the process Z have the dynamics

dZt = σ(t, Zt)dWt, Z0 ∼ ν. (3.20)

We summarise the relevant results from [28] in Theorem 3.3.

Theorem 3.3. (Gassiat et al. [28]) Assume that ν and µ are probability measures on

(R,B(R)) such that they have a first moment and that their potentials satisfy

Uµ(x) ≤ Uν(x), ∀x ∈ R. (3.21)

Furthermore, let σ(t, x) ∈ C([0,∞),R) satisfy the Lipschitz and linear growth conditions

sup
t∈[0,∞)

sup
x 6=y

|σ(t, x)− σ(t, y)|
|x− y|

<∞, sup
t∈[0,∞)

sup
x∈R

|σ(t, x)|
1 + |x|

<∞, (3.22)

and further assume that for each compact K ⊂ {x : Uν(x) 6= Uµ(x)} we can find a constant

cK > 0 such that σ(t, x) ≥ cK > 0, ∀t ≥ 0, x ∈ K (local ellipticity).

Under the above assumptions, the following two conditions are equivalent:

1. there exists a Root barrier R such that the hitting time τR = inf{t > 0 : (t, Zt) ∈ R}
embeds µ in Z,

2. there exists a time decreasing viscosity solution u ∈ C([0,∞], [−∞,∞]) to the problem
min(u− Uµ, ∂tu− σ(x)2

2 ∂xxu) = 0 on (0,∞)× R,
u(0, x) = Uν(x),

u(∞, x) = Uµ(x).

(3.23)

In addition, the Root barrier is found as

R = {(t, x) ∈ [0,∞]× [−∞,∞] : u(t, x) = Uµ(x)} (3.24)

and we have

u(t, x) = −E|ZτR∧t − x|. (3.25)
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Recall that the assumption Uµ(x) ≤ Uν(x), ∀x ∈ R is required for Theorem 2.6 to ensure

the existence of a stopping time of minimal residual expectation, and that by Theorem 2.7

every Root stopping time is of minimal residual expectation.

Furthermore, since we are trying to embed the implied distribution µ in the geometric

Brownian motion dZt = ZtdWt, Z0 ∼ ν, we will be especially interested in the case σ(t, x) =

x. This choice of σ is sufficiently smooth and satisfies both the Lipschitz and linear growth

conditions (3.22). The local ellipticity is more subtle in this case, and as stated in Gassiat

et al. [28], it holds for σ(t, x) = x if and only if supp(µ) ⊂ R+.

Thus, given that the distributions ν and µ satisfy (3.21), we may find the Root barrier

embedding µ in Z from the solution to the free boundary problem (3.23). Given a solution

to (3.23), we can construct the stopping time τR = inf{t > 0 : (t, Zt) ∈ R} using the

characterisation (3.24), and then use the law of this stopping time to determine E
[
(τR −

Q)+
]
. Therefore, solving the free boundary problem (3.23) will allow us to find a lower

price bound on the variance call.

We now turn to the subhedging strategy from Cox & Wang [13]. Consider the case of

embedding µ in Z defined in (3.20), where σ is smooth, satisfies the Lipschitz condition,

and ∃K > 0 such that 1/K < σ < K on R. Let F be a convex increasing payoff function

with F (0) = 0 and denote by f its right derivative. Furthermore, introduce

M(x, t) = E(x,t)f(τR) (3.26)

and assume that M is locally bounded on R×R+. Here E(x,t) is the expectation if we start

the process that we embed in at x at time t, and τR is the Root stopping time. Furthermore,

define the functions

Z(x) = 2

∫ x

0

∫ y

0

M(z, 0)

σ(z)2
dzdy, (3.27)

G(x, t) =

∫ t

0
M(x, s)ds− Z(x), (3.28)

H(x) =

∫ R(x)

0

(
f(s)−M(x, s)

)
ds+ Z(x), (3.29)

and notice that since Z ′′(x) = 2M(x,0)
σ(x)2

> 0, we have that Z is convex. Then by Cox & Wang

[13], we have G(x, t)+H(x) ≤ F (t), ∀(x, t) ∈ R×R+, which will allow us to use G and H to

subhedge F . Finally, define τt :=
∫ t
0 σ

2
sds, and φt := φ̃τt where φ̃t ∈ [∂G∂x (x−, t), ∂G∂x (x+, t)].

Then the strategy of holding at each time t
φt +H ′+(S0) shares of the asset,

G(S0, 0)− φ0S0 +H(S0)−H ′+(S0)S0 bonds,

H ′′(dK) units of the call with strike K for K ∈ (S0,∞),

H ′′(dK) units of the put with strike K for K ∈ (0, S0].

(3.30)

subhedges the payoff F (〈X〉T ), and this is the subhedging strategy of Cox & Wang [13].

The subhedging cost, i.e. the cost of setting up this portfolio, is given by

G(S0, 0) +H(S0) +

∫ S0

0
P0(K)H ′′(dK) +

∫ ∞
S0

C0(K)H ′′(dK), (3.31)
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and this would then be a lower bound on the no-arbitrage price of the variance call.

Remark 3.4. Our case of interest σ(x) = x does not satisfy the condition 1/K < σ < K

for some K > 0 and all x ∈ R. Nevertheless, the results of Cox & Wang can be extended

to this case as long as we only allow values on (0,∞) [13].

Remark 3.5. The subhedging property of the above strategy in fact holds for any choice

of barrier function R(x) (without requiring that they embed the target distribution), and

we choose the Root barrier in order to determine the optimal (highest possible) value of the

lower bound [13].

(b) Rost embedding and superhedging

The Rost embedding can be described using a PDE formulation similar to that for Root

above. The relevant results from Gassiat et al. [28] are presented in Theorem 3.6 below.

Theorem 3.6. (Gassiat et al. [28]) Assume that ν, µ, and σ(t, x) satisfy the assumptions

of Theorem 3.3. Then the statement 1. below implies statement 2.:

1. there exists a Rost barrier R such that the hitting time τR = inf{t > 0 : (t, Zt) ∈ R}
embeds µ in Z,

2. there exists a time decreasing viscosity solution u ∈ C([0,∞], [−∞,∞]) to the problem{
∂tu = min

(
0, σ(x)

2

2 ∂xxu
)

on (0,∞)× R,

u(0, x) = Uν(x)− Uµ(x).
(3.32)

If we further assume that there exists an open set V such that

supp(ν) ⊂ V ⊂ supp(µ)c (3.33)

holds, then we also have that 2. implies 1.

The Rost barrier can then be found as

R = {(t, x) ∈ (0,∞]× R : u(t, x) = u(0, x)} (3.34)

and we have

u(t, x) = −E|ZτR∧t − x| − Uµ(x). (3.35)

Remark 3.7. The condition (3.33) can be intuitively thought of in the following way:

consider embedding N (0, 1) in a process Y with Y0 ∼ U([−0.5, 0.5]). For the supports of

these distributions we have

supp
(
U
(
[−0.5, 0.5]

))
= [−0.5, 0.5] ⊂ R = supp

(
N (0, 1)

)
, (3.36)

and they thus overlap. Due to the definition of a reversed barrier, the only way to embed

the values from the interval [−0.5, 0.5] would be to have the barrier overlap that interval,

and we would thus stop the process at time zero, preventing embedding of the desired target

distribution.
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In a similar fashion as for the Root barrier, the solution to the free boundary problem

(3.32) in Theorem 3.6 allows us to characterise the Rost barrier. Given that the conditions

in the theorem hold, once we have found a solution to (3.32) we can then write the barrier

as R = {(t, x) ∈ (0,∞] × R : u(t, x) = u(0, x)}, and construct the Rost stopping time

τR = inf{t > 0 : (t, Zt) ∈ R}. Knowing the law of this stopping time, we can then

determine the upper bound E
[
(τR −Q)+

]
on the price of the variance call.

The Cox & Wang superhedging strategy follows the same general structure as their

subhedging strategy. Let M be defined as in (3.26), with the Rost stopping time τR in place

of the Root τR, and as before assume local boundedness. Assume that Γ := limt→∞ f(t) <

∞ exists, and define (for some S∗0 ∈ (inf supp(µ), inf supp(µ))) the functions

Q(x) =

∫ x

S∗
0

∫ y

S∗
0

2

σ(z)2
dzdy, (3.37)

J(x, t) = lim
T→∞

∫ T

t

[
M(x, s)− f(s)

]
ds, (3.38)

G(x, t) = F (t)− J(x, t)− ΓQ(x), (3.39)

H(x) = J(x,R(x)) + ΓQ(x). (3.40)

Again, let φt := φ̃τt and φ̃t ∈ [∂G∂x (x−, t), ∂G∂x (x+, t)]. Then, the strategy (3.30) with the

alternative definitions of G and H as in (3.39) and (3.40) superhedges the payoff F (〈X〉T )

[12].

3.3 Comparing the approaches theoretically

(a) General observations

In the previous two sections we have presented two alternative approaches for bounding the

no-arbitrage of variance calls, and we will here compare them from a theoretical point of

view. We will particularly investigate the connection between the methods for obtaining

lower bounds.

As an initial observation, the approach of Cox & Wang [12,13] will generally give tighter

bounds on the no-arbitrage price than that of Carr & Lee [7]. The optimality of the Root

and Rost embeddings implies that their corresponding price bounds are as tight as possible,

in the sense that they can each be associated with some admissible arbitrage free model for

the price process, and that E(τR−Q)+ ≤ E(τ−Q)+ ≤ E(τR−Q)+ for all solutions τ to the

SEP. Hence, making the bounds tighter than the Root and Rost bounds would introduce

arbitrage in their associated models. The bounds from the Carr & Lee approach, however,

do not have the same optimality property as the Root and Rost embeddings, and so we

may think of it in the general case as an approximate method. The general idea behind

the Carr & Lee approach is to find a lower bound on the supremum over the subhedging

strategies, and an upper bound on the infimum over the superhedging strategies, without

necessarily attaining either extremum. Put differently, Carr & Lee work within a subset of

the family of subhedging strategies and try to maximise their strategy in order to approach
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the optimal lower bound from below, while Cox & Wang do attain the supremum (and vice

versa for the upper bound).

The results for bounding the values of variance calls presented above can be extended

to larger classes of payoffs. As explained in Section 2.3, put-call parity for variance options

allows us to directly extend the results to variance puts. Using the fact the Root and Rost

stopping times maximise and minimise the quantity EF (τ) for convex F , the idea of the

Cox & Wang approach can be generalised to convex payoffs, with a trivial extension to the

concave case.

Furthermore, both approaches can be used to obtain price bounds for a larger class of

derivatives by using the following arguments. Consider a twice differentiable payoff F (x).

Then using (2.11), F may be decomposed as

F (〈X〉T ) = F (S0) + F ′(S0)[〈X〉T − S0] +

∫ ∞
S0

F ′′(K)
(
〈X〉T −K

)+
dK

+

∫ S0

0
F ′′(K)

(
K − 〈X〉T

)+
dK.

(3.41)

The variance put can be rewritten using put-call parity (2.15), so that the decomposition

becomes

F (〈X〉T ) = F (S0) + F ′(S0)[〈X〉T − S0] +

∫ ∞
S0

F ′′(K)
(
〈X〉T −K

)+
dK

+

∫ S0

0
F ′′(K)

[(
〈X〉T −K

)+
+K − 〈X〉T

]
dK

=

[
F (S0)− S0F ′(S0) +

∫ ∞
0

KF ′′(K)dK

]
+

[
F ′(S0)−

∫ ∞
0

F ′′(K)dK

]
〈X〉T

+

∫ ∞
0

F ′′(K)(〈X〉T −K)+dK.

Define

wB = F (S0)− S0F ′(S0) +

∫ ∞
0

KF ′′(K)dK (3.42)

wX = F ′(S0)−
∫ ∞
0

F ′′(K)dK, (3.43)

so that we may write the payoff as

F (〈X〉T ) = wB + wX〈X〉T +

∫ ∞
0

F ′′(K)(〈X〉T −K)+dK. (3.44)

The first term in the RHS is a constant and can be replicated by bonds, and the second

term can be replicated using (2.10) and (2.12). In the final term, we have a combination of

variance calls, which we may sub- or superhedge using e.g. Carr & Lee or Cox & Wang. In

order to obtain a lower bound, we can subhedge the calls at all strikes K where F ′′(K) ≥ 0

and superhedge calls at all strikes K where F ′′(K) < 0, and vice versa to obtain an upper

bound.

Note that both Carr & Lee [7] and Cox & Wang [12,13] work in the setting of continuous

price processes. For a treatment of the case when jumps are allowed in the underyling

process, see e.g. Hobson & Klimmek [33].
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(b) Carr & Lee subhedge as a special case of Root embedding

We will now turn to one of our main interests for this section, which is investigating in what

sense the Carr & Lee subhedging strategy can be thought of as an approximation of the Cox

& Wang subhedging, and in what settings we expect them to be equivalent. As stated in

Remark 5.4 in Cox & Wang [13], the lower bound from the Carr & Lee subhedging [7] may

be considered a special case of the Cox & Wang subhedging where we choose a constant

barrier function R(x) = Q instead of the Root barrier. It is this connection that we here

explore and characterise.

First, consider the case of a log-normal target distribution µ, for which we assume∫
xµ(dx) = S0, which is a necessary condition for Uν ≥ Uµ and thus Theorem 2.6. Such a

target distribution arises from e.g. the Black-Scholes dynamics. Proposition 3.8 says that

for such distributions, the Carr & Lee subhedging is an exact hedging strategy. It is worth

noting that not only does the lower bound from the Carr & Lee subhedging in this case

coincide with the Root bound, but they both yield the “true” price of the variance call.

Proposition 3.8. If the target distribution µ of the price process is log-normal (with∫
xµ(dx) = S0), then the Carr & Lee subhedging strategy perfectly replicates the variance

call payoff.

Proof. Since we are embedding the distribution in the geometric Brownian motion Zt =

S0 exp(Wt − t/2), which has mean S0, the variance (parameterised by t) is the only degree

of freedom left for the log-normal µ. In other words, for each time t, the distribution of Zt

is log-normal with mean S0 and variance S2
0(et−1). Hence, the Root barrier for embedding

µ in Z will be some constant q > 0, with associated martingale process S̃t := Zq∧ t
T−t

, and

we have S̃0 = S0 and S̃T = Zq ∼ µ. Equivalently, any constant barrier R(x) = q will

embed a log-normal distribution in Z. Note that with the Black-Scholes model, we would

set q = σ2T .

We now examine how the Carr & Lee subhedging strategy performs for this martingale

process. We have 〈X〉T = 〈logZ〉q = q. Thus if q ≥ Q, we have τQ ≤ T , and else τQ > T .

In the case of q ≥ Q, we have from the fact that the target distribution is log-normal that

I0(K,T ) = q ≥ Q for all K, and we thus get the payoff

1

2

∫ T

τQ

λyy(St)d〈S〉t ≤
1

2

∫ T

τQ

d〈logS〉t = q −Q = (q −Q)+, (3.45)

with equality if we choose λ as in (3.7). If on the other hand q < Q, we instead get the

payoff

−BS(Zq, Q− q;λ) +BS(Zq, 0;λ). (3.46)

However, since in this case I0(K,T ) = q < Q for all K, the integral in the optimal λ (3.7)

will be over a null set, whereby we get

−BS(Zq, Q− q;λ) +BS(Zq, 0;λ) = 0 = (q −Q)+. (3.47)
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Hence, the Carr & Lee subhedge will always perfectly replicate variance call payoffs when-

ever we embed in Z and the Rost barrier function R(x) is a constant, i.e. when the target

distribution is log-normal.

Furthermore, we have by Theorem 3.9 that the Cox & Wang subhedging strategy indeed

reduces to the Carr & Lee subhedging strategy if we use a constant barrier function R(x) =

Q instead of the Root barrier function, without making any additional assumptions about

the target distribution.

Theorem 3.9. (Based on Remark 5.4 in Cox & Wang [13]) When using R(x) = Q

instead of the Root barrier, the Cox & Wang subhedging reduces to a Carr & Lee subhedging

strategy with λ as in (3.11). If I0(K,T ) > Q for all K, then the modified Cox & Wang

strategy reduces to the optimal Carr & Lee subhedging (with λ as in (3.7)).

The proof of Theorem 3.9 will be given at the end of this chapter, and we will first

prove Lemma 3.10 below. As mentioned in Remark 3.4, the results of Cox & Wang can be

extended to the case of σ(x) = x. In this case, a lower limit of integration of zero in (3.27)

causes the integral to diverge. Note that Cox & Wang [13] never use the fact that the lower

limit of integration is zero in their proofs, and so we are able to change the lower limit as

in Lemma 3.10.

Lemma 3.10. In the case of σ(x) = x, a constant barrier function R(x) = Q, and F a

call payoff, the Cox & Wang subhedging strategy is unchanged if we instead use Z(x) =

2
∫ x
S0

∫ y
S0
z−2dzdy.

Proof. Consider the Cox & Wang subhedging strategy (3.30) with Z, G, and H defined as

in (3.27), (3.28), and (3.29). The time-t value of this subhedging portfolio is then

G(S0, 0) +

∫ t

0
φsdSs +H(S0) +H ′+(S0)(St − S0) +

∫ S0

0
Pt(K)H ′′(dK)

+

∫ ∞
S0

Ct(K)H ′′(dK)

= G(S0, 0) +

∫ t

0
φsdSs + Et

[
H(S0) +H ′+(S0)(ST − S0) +

∫ S0

0
(K − ST )+H ′′(dK)

+

∫ ∞
S0

(ST −K)+H ′′(dK)

]
= G(S0, 0) +

∫ t

0
φsdSs + Et

[
H(ST )

]
, (3.48)

where we used (2.11) in the last equality. For the call payoff F (x) = (x−Q)+ we have the

right derivative

f(x) =

{
1 if x ≥ Q,
0 if x < Q,

(3.49)

and with R(x) = Q we now get

M(x, t) = E(x,t)f(Q) = 1. (3.50)
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Rewrite Z as

Z(x) = 2

∫ x

0

[ ∫ y

κ

1

z2
dz +

∫ κ

0

1

z2
dz

]
dy

= 2

∫ x

κ

∫ y

κ

1

z2
dzdy + 2

∫ κ

0

[
1

S0
− 1

y

]
dy + 2x

∫ κ

0

1

z2
dz.

(3.51)

If we now define

gκ(x) := 2

∫ κ

0

[
1

S0
− 1

y

]
dy + 2x

∫ κ

0

1

z2
dz, (3.52)

Zκ(x) := 2

∫ x

κ

∫ y

κ

1

z2
dz, (3.53)

so that

Z(x) = Zκ(x) + gκ(x), (3.54)

then the time-t value of the portfolio becomes (note that gκ is a linear function in x)

G(S0, 0) +

∫ t

0
φsdSs + Et[H(ST )] (3.55)

= −Zκ(S0)− gκ(S0)−
∫ t

0

[
Z ′κ(Ss) + g′κ(Ss)

]
dSs + Et[−Q+ Zκ(ST ) + gκ(ST )] (3.56)

= Et[Zκ(ST )]−Q− Zκ(S0)−
∫ t

0
Z ′κ(Ss)dSs + g(St)− g(S0)−

∫ t

0
g′(Ss)dSs (3.57)

= Et[Zκ(ST )]−Q− Zκ(S0)−
∫ t

0
Z ′κ(Ss)dSs. (3.58)

So far, κ > 0 has been an arbitrary constant. We will now show that we can take κ = S0

without any loss of generality. To do this, we repeat the steps in (3.51) (or simply use

Z(x) = Zκ(x) + gκ(x) = ZS0(x) + gS0(x)) to get

Zκ(x) = ZS0(x) + gS0(x)− gκ(x), (3.59)

and from this we arrive at

Et[Zκ(ST )]−Q− Zκ(S0) +

∫ t

0
Z ′κ(Ss)dSs = Et[ZS0(ST )]−Q− ZS0(S0) +

∫ t

0
Z ′S0

(Ss)dSs.

(3.60)

Having shown Lemma 3.10, we now turn to the proof of Theorem 3.9.

Proof of Theorem 3.9. Recall Remark 3.5 that the Cox & Wang strategy subhedges for any

choice of R(x), and that choosing the Root barrier maximises the lower bound. We thus

take R(x) = Q and still obtain a subhedging portfolio. By Lemma 3.10, we may then use

a modified Z of the form

Z(x) = 2

∫ x

S0

∫ y

S0

1

z2
dzdy (3.61)
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for the subhedging, and we get

Z(x) = 2

∫ x

S0

[
1

S0
− 1

y

]
dy = 2

[
x− S0
S0

− log(x/S0)

]
. (3.62)

If we choose λ as in (3.11), we can further simplify Z to Z(x) = λ(x). Moreover, we have

G(x, t) =

∫ t

0
ds− Z(x) = t− Z(x), (3.63)

H(x) =

∫ Q

0

(
1{s≥Q} − 1

)
ds+ Z(x) = −Q+ Z(x), (3.64)

and the time-t value (3.48) of the Cox & Wang subhedging portfolio can thus be written

Z(S0) +

∫ t

0
φsdSs + Et

[
−Q+ Z(ST )

]
= Et

[
λ(ST )

]
−Q+

∫ t

0
φsdSs. (3.65)

Now, with λ as in (3.11), we may use (3.14) to obtain

BS(S0, Q;λ) = Q. (3.66)

In addition, if we take φt = ∂G
∂x (St, τt) we get (using (3.62))

φt = −Z ′(ST ) =
2

St
− 2

S0
. (3.67)

Comparing this with Nt defined in (3.3), we find that (using the same p(z) as in (3.14))

λy(y) = −2

y
+

2

S0
, (3.68)

BSy(y, v;λ) =

∫ ∞
−∞

[
− 2

y
+

2

S0
ez
]
p(z)dz = −2

y
+

2

S0
, (3.69)

and thus φt = Nt. Then the time-t of the portfolio is

E
[
λ(ST )

]
+NtSt −BS(S0, Q;λ) +

∫ t

0
NsdSs −NtSt, (3.70)

which is equivalent to the Carr & Lee subhedging strategy (3.4). Hence, we have shown that

when using R(x) = Q, the Cox & Wang subhedging reduces to a Carr & Lee subhedging

strategy with λ as in (3.11). If I0(K,T ) > Q for all K, then we may also use the optimal

λ from (3.7) in our arguments above, whereby the modified Cox & Wang strategy would

reduce to the optimal Carr & Lee subhedging. This concludes the proof.
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Chapter 4. Numerical investigation

We here investigate how the approaches by Carr & Lee [7] and Cox & Wang [12,13] perform

in numerically simulated scenarios. The structure of this chapter is as follows: in Section 4.1

we explain the strategy we employ to generate our simulated data; in Sections 4.2 and 4.3

we describe our implementation and results for the Carr & Lee and Cox & Wang approaches

respectively; and in Section 4.4 we compare and discuss the results. The Matlab code for

our implementation is available upon request.

4.1 Simulating data

To compare the two approaches numerically, we test them on simulated data for which we

may also determine the “true” variance call value.

Recall the Black-Scholes dynamics as given in (2.1), and the Heston model dynamics as

in (2.2). Based on the discussion in Section 2.3, we set the interest rate r to be zero in both

models. The price processes are then martingales, and there is no need to discount future

values using bond prices.

There are three kinds of data that we need to synthesise in order to carry out our analysis:

(i) price paths; (ii) terminal distributions; and (iii) European call option prices. In simple

cases, these three can be determined by independent computations, but in more general

setups we may need to compute some of them based on the others. In our implementation,

we start by computing call prices over a range of strikes under the chosen model (Black-

Scholes or Heston), and then find the implied distribution from the call prices. We take

this implied distribution as the target distribution when determining the price bounds, and

path simulation is used to find the “true prices” for the variance calls. A more detailed

description of these steps is provided below.

(a) Path simulation

For the Black-Scholes model, we have paths of the form

St = S0 exp

(
−1

2
σ2t+ σWt

)
(4.1)

for a standard Brownian motion W . If we simulate these paths with a time-step of ∆t, then

we can generate independent Brownian increments ∆Wn ∼ N (0,∆t) and simply compute

each simulated value Ŝn along the path as

Ŝn = S0 exp

(
−1

2
σ2n∆t+ σ

n∑
i=1

∆Wi

)
. (4.2)
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Heston paths are simulated using the following scheme [37,41]:

vn+1 = vn + κ(θ − v+n )∆t+ ς
√
v+n ∆Ŵn, (4.3)

Sn+1 = Sn exp
(
−v+n /2∆t+

√
v+n ∆Wn

)
, (4.4)

where Ŵ and W have correlation ρ.

As for parameter values, we take maturity T = 2 and initial price of the underlying

S0 = 100 for both models. For the Black-Scholes model, we will take σ = 0.2. We use the

same Heston parameter values as in Carr & Lee [7], which are κ = 1.15, θ = 0.04, ς = 0.39,

v0 = 0.04, and ρ = 0. Note that the Feller condition is not satisfied for these values, so that

we do need the truncation v+n in (4.3), and that W and Ŵ become uncorrelated.

In the Black-Scholes case, the realised variance is trivially
∫ T
0 σ2dt = σ2T . For the

Heston paths, we instead compute the realised variance of each simulated path using the

discretisation in (2.7), where we take the ti to be the discrete times in our simulation.

(b) Determining distributions

For the Black-Scholes models, the price process will have a log-normal distribution at matu-

rity T , and for the Heston model we can find a semi-closed expression [22] for the probability

density function. An alternative approach to using the closed and semi-closed expressions

is to apply the Breeden-Litzenberger formula to the call prices to determine the implied

density, and this is a method of obtaining the terminal (implied) distribution without hav-

ing to know the underlying dynamics. For this reason, this latter method appeals to the

idea of model-independent pricing.

Discretise the strikes over a grid [Kmin,Kmax] with a step size of ∆K. We then apply the

Breeden-Litzenberger formula (2.16) and approximate the implied density p̂(K) at discrete

points using the finite difference scheme

p̂(K) =
C(K + ∆K)− 2C(K) + C(K −∆K)

∆K2
. (4.5)

This would then correspond to the target distribution that we aim to embed in our numerical

implementation.

(c) Computing European call option prices

For the Black-Scholes model we directly obtain the European call option prices using the

formula

C(S, t;K,T ) = S0Φ(d1)−KΦ(d2), (4.6)

where

d1 =
log(S0/K) + 1

2σ
2T

σ
√
T

, d2 = d1 − σ
√
T , (4.7)
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and Φ is the standard normal cumulative density function. For the Heston model, we will

use the method below (based on [31], where we have set r = ρ = 0):

C(S, v, t;K,T ) = S0P1 −KP2 (4.8)

Pj(x, v, T ; log(K)) =
1

2
+

1

π

∫ ∞
0

Re

[
e−iφ log(K)fj(x, v, T ;φ))

iφ

]
dφ (4.9)

with

fj(x, v, t;φ) = exp(Cj(T − t;φ) +Dj(T − t;φ)v + iφx), (4.10)

Cj(τ ;φ) =
a

ς2

{
(b+ dj)τ − 2 log

[
1− gjedjτ

1− gj

]}
(4.11)

Dj(τ ;φ) =
b+ dj
ς2

[
1− edjτ

1− gjedjτ

]
, (4.12)

and

gj =
b+ dj
b− dj

, (4.13)

dj =
√
b2 − ς2(2ujφi− φ2), (4.14)

where

u1 =
1

2
, u2 = −1

2
, a = κθ, b = κ. (4.15)

Here, we take t = 0, S = S0, and v = v0. From the above formulas (4.6) and (4.8), we

obtain the call prices under the two models, and using Breeden-Litzenberger we could then

recover the distribution implied by the call options.

4.2 Carr & Lee method

(a) Strategy of implementation

From Proposition 3.1, we know that a lower bound on the option price is given by the

expression

−BS(Y0, Q;λ) + E0λ(YT ). (4.16)

Here BS(y, v; f) is defined as in (3.2), and in order to maximise the lower Carr & Lee

bound we will use λ as in (3.7). The method we will use to find the Carr & Lee lower

bound is summarised in Algorithm 1. In the first step of Algorithm 1, we determine the

dimensionless implied volatility. In order to do this, we numerically find the zero of the

function

g(x) = BS(S0, x; vanK)− E0

[
vanK(ST )

]
. (4.17)

Recall that the function BS is increasing in its second argument, and that the solution is

unique. Using the I0(K,T ), we are able to determine the domain of integration for the

optimal λ in (3.7), and with this λ we will be able to compute the lower bound.
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Algorithm 1: Procedure for Carr & Lee lower bound

Data: European vanilla options, implied distribution
Result: Lower bound on price of variance call using method from Carr & Lee [7].

1 For each available strike K, find I0(K,T ) such that BS(S0, I0(K,T ); vanK) = vanK
holds

2 Determine λ(y) using the I0(K,T ) from the previous step
3 Evaluate −BS(S0, Q;λ)
4 Estimate Eλ(ST ) using the implied distribution for ST
5 Find the lower bound as −BS(S0, Q;λ) + Eλ(ST )

For the Carr & Lee upper bound, we will implement the functions described in Proposi-

tions 3.2 and apply the method in Algorithm 2. The implementation of L is straightforward,

and for BP we will numerically estimate the complex integral in (3.18). As stated in Section

3.1, there is room for optimisation in our choice of bd and bu, and our choices of bd and

bu are not necessarily those that yield the lowest possible upper bound for the Carr & Lee

method.

Algorithm 2: Procedure for Carr & Lee upper bound

Data: European vanilla options, implied distribution
Result: Upper bound on price of variance call using method from Carr & Lee [7].

1 Select appropriate values for bd, bu such that 0 < bd ≤ S0 ≤ bu <∞
2 Evaluate −L∗(S0; bd, bu, Q)
3 Estimate EL∗(ST ; bd, bu, Q) using the implied distribution for ST
4 Find the upper bound as −L∗(S0; bd, bu, Q) + EL∗(ST ; bd, bu, Q)

(b) Numerical results

The numerically determined dimensionless implied volatilities are displayed in Figures 4.3a

and 4.3b for the Black-Scholes and Heston models, respectively.

First, consider the dimensionless implied volatility for Black-Scholes. From theory, we

expect in this case constant I0(K,T ) = σ2T , which would be 0.08 for our parameter values.

Indeed, this is what we observe for mid-range to high strikes. For smaller strikes, however,

we see a spike in the dimensionless implied volatility. This appears to be caused by limi-

tations stemming from the accuracy of the solver for I0(K,T ), combined various numerical

errors arising from e.g. our discretisation of the target distribution. Note that vanK is de-

fined using OTM options, so for small K we have call options that are far out of the money.

The option price, appearing as the term −E0

[
vanK(ST )

]
in (4.17), is thus very close to

zero, and the consequences of numerical errors and limited machine precision become no-

ticeable. Nevertheless, it is worth noting that although we see dramatic deviations in the

dimensionless implied volatility for small strikes, these do not seem to significantly impact

neither the value of BS(S0, I0(K,T ); vanK) nor the resulting λ, though this is something

that could be further investigated in future works.

Similarly, we also see spikes in the dimensionless implied volatility for the Heston model

for small strikes, for the same reasons as discussed above. For mid-range and high strikes
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Figure 4.1: Bounds on the no-arbitrage price for the Black-Scholes variance call. The
lower bounds from Carr & Lee (“C & L”) and Cox & Wang (“C & W”) coincide with the
true price. The upper bound “BB 1” is when we use the BB construction from the first time
step, and “BB 2” from the second timestep.

the implied volatility is no longer constant as for the Black-Scholes model, but we instead

see the characteristic “volatility smile”.

The main interest of this section are the price bounds obtained for the variance calls,

and these are displayed together with the “true prices” in Figures 4.1 and 4.2 for the Black-

Scholes and Heston models respectively.

For the bounds in the Black-Scholes case, our numerical results agree with our theoret-

ical observation that for log-normal target distributions, the subhedging strategy perfectly

replicates the variance call and the lower bound coincides with the true price of the op-

tion. In comparison, the upper bound is further away from the true price, though it is

possible that we can decrease the upper bound by improving our choice of parameters bd,

bu. Optimisation of the parameters, so that the upper bound is minimised, could also be

investigated in future works.

For the Heston bounds on the other hand, there is now a gap between each bound and

the “true price”. The lower bound still appears to be closer to the true price than the upper

one, agreeing with the observations of Carr & Lee [7], but once again it is possible that the

upper bound can be further reduced. The shape of the lower bound is now smoother and

more curved than in the Black-Scholes case, which can be motivated by the fact that we

now see a non-atomic distribution of implied volatilities and realised variances.
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Figure 4.2: Bounds on the no-arbitrage price for the Heston variance call. The lower
bounds from Carr & Lee (“C & L”) and Cox & Wang (“C & W”) almost coincide. The
upper bound “BB 1” is when we use the BB construction from the first time step, and “BB
2” from the second timestep.

(a) Implied volatility Black-Scholes (b) Implied volatility Heston

Figure 4.3: Dimensionless implied volatilities for (a) the Black-Scholes data, and (b) the
Heston data.

4.3 Cox & Wang method

A summary of the method that we employ for the Cox & Wang approach is given in

Algorithm 3. The general method of implementation will be similar for the lower and upper

bounds, and will differ primarily in what free boundary problem we solve in the second

step.

For the first step of Algorithm 3, we need to determine the potentials Uν and Uµ of

the initial and target distributions, which we need to properly frame the free boundary

problems. For our purposes, we will have initial distribution ν ∼ δS0 , and µ the (implied)
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target distribution. Recall Definition 2.5, and that generally we would need to evaluate

an integral to determine the potentials. In our implementation, however, we will exploit

some useful properties of the distributions at hand to reduce the computational cost of

determining the potentials. Firstly, for the initial distribution ν = δS0 we directly get the

potential

Uν(x) = −
∫
R
|y − x| δ(y − S0)dy = −|x− S0|. (4.18)

Secondly, for the potential Uµ of the target distribution, we can use the Breeden-Litzenberger

formula as in Cox & Wang [13] to obtain the expression

Uµ = S0 − 2C0(x)− x. (4.19)

The simple formulas (4.18) and (4.19) will allow us to directly determine the potentials and

avoid numerical integration, significantly improving the performance of our implementation.

The remaining steps of Algorithm 3 will be explained in greater detail below.

Algorithm 3: Procedure for Cox & Wang bounds

Data: European vanilla options, implied distribution
Result: Price bounds on variance call using Root or Rost embeddings.

1 Determine potentials Uν and Uµ
2 Find solution u to free boundary problem (3.23) (Root) or (3.32) (Rost)

3 Find barrier function R (Root) or R (Rost) using u from previous step
4 Simulate paths of Z hitting the barrier to obtain distribution of hitting times
5 Use distribution of hitting times to determine E(τ −Q)+

(a) Implementation of Root embedding

For the Root embedding, we will solve the free boundary problem (3.23), as formulated in

Gassiat et al. [28]. Recall that we will be able to characterise the Root barrier through the

solution to the following problem:
min(u− Uµ, ∂tu− σ(x)2

2 ∂xxu) = 0, on (0,∞)× R,
u(0, x) = Uν(x),

u(∞, x) = Uµ(x).

(4.20)

We want to discretise the above problem using an explicit finite difference scheme.

Approximate the target distribution as being supported on some bounded interval

[Smin, Smax]. Introduce a mesh with time step ∆t := T/M and spatial step ∆x :=

(Smax−Smin)/(N −1), where M is the number of steps taken in time in the scheme and N

the number of grid points in the spatial dimension. Let tm := m∆t for m ∈ {0, 1, . . . ,M},
and x1 := Smin, xN := Smax, with interior grid points xn = Smin + (n − 1)∆x for

n ∈ {2, 3, . . . , N − 1}. Let umn be the approximation of the value u(tm, xn) in the dis-

cretisation. We then take the initial condition

u0n = Uν(xn), n ∈ {1, 2, . . . , N} (4.21)
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and the boundary conditions

um1 = Uν(x1), umN = Uν(xN ). (4.22)

Discretising the heat equation above using an explicit scheme, we obtain the expression

um+1
n − umn

∆t
− x2n

2

umn+1 − 2umn + umn−1
(∆x)2

. (4.23)

Thus, to find our (discretised) solution, we iterate forward in time by taking

um+1
n = max

[
Uµ(xn), umn + λx2n(umn+1 − 2umn + umn−1)

]
, (4.24)

where λ = ∆t/(2(∆x)2). By Proposition 1 in Gassiat et al. [28], our discretised solution will

converge to the true solution in the L∞-norm as our mesh size goes to zero, provided that

the Courant-Friedrichs-Lewy (CFL) condition ∆t|σ|∞;[Smin,Smax]×[0,T ] = ∆tSmax < (∆x)2

holds and that the assumptions on ν, µ, and σ in Theorem 3.3 hold. We can choose ∆t

and ∆x such that the CFL conditions holds, and since our target distribution is supported

on R+, local ellipticity also holds. Hence, we may use the above explicit scheme to find a

discretisation of the solution u of the free boundary problem (4.20), and this concludes the

second step of Algorithm 3.

We know that u(t, x) = Uµ(x) holds in the Root barrier, and so once we have solved

the above problem we take the barrier function to be R(xn) = min{tm;umn = Uµ(xn)}, as

is the third step of Algorithm 3. Note that this is a discretised version of the barrier, and

we approximate the continuous barrier using cubic spline interpolation.

Knowing the barrier function, we are ready for the fourth step of Algorithm 3, where

we sample from the distribution of Root stopping times using Monte Carlo methods. The

obtained barrier should be such that if we start a geometric Brownian motion dZt = ZtdWt

at Z0 = S0 and stop it when it hits the barrier, the stopped values should have the same

law as that of the target distribution, and the hitting times will be the Root stopping times.

Hence, comparing the distribution of the stopped values to the target distribution allows

us to verify that the hitting times indeed do embed the target distribution in the geometric

Brownian motion, and that they thus are in SEP (Z, µ).

The fifth and final step of Algorithm 3 is to use the distribution of the Root stopping

times resulting from our Monte Carlo path simulations to estimate the optimal lower bound

E[(τR −Q)+] on the no-arbitrage price for the variance call.

(b) Implementation of Rost embedding

Our implementation of the Rost embedding follows largely the same structure as for the

Root embedding, except that we are now solving the free boundary problem{
∂tu = min

(
0, σ(x)

2

2 ∂xxu
)

on (0,∞)× R,

u(0, x) = Uν(x)− Uµ(x).
(4.25)

31



We discretise the problem in a similar fashion as above, approximating the support of the

target distribution by a bounded interval and using a similar mesh as before. This time,

our initial condition instead reads

u0n = Uν(xn)− Uµ(xn), n ∈ {1, 2, . . . , N} (4.26)

and we impose the boundary conditions

um1 = Uν(x1)− Uµ(x1), umN = Uν(xN )− Uµ(xN ). (4.27)

Furthermore, we use an explicit finite difference scheme to discretise the PDE as

um+1
n − umn

∆t
= min

(
0,
x2n
2

umn+1 − 2umn + umn−1
(∆x)2

)
, (4.28)

and by solving for um+1
n we get (with λ = ∆t/(2(∆x)2) as before)

um+1
n = umn + min

(
0, λx2n(umn+1 − 2umn + umn−1)

)
. (4.29)

We then step forward in time using the above scheme and thus obtain a discretisation umn

of u(x, t).

In analogy with the Root case, we will be able to determine the Rost barrier from the

solution to the free boundary problem (4.25). We know that u(x, t) = u(x, 0) = Uν(x) −
Uµ(x) holds in the Rost barrier B, and so we determine the Rost barrier function by R(xn) =

max{tm;umn = Uν(xn)−Uµ(xn)}, and then use cubic spline interpolation for any x between

the grid points.

Once we have determined the Rost barrier, we should in principle proceed in the same

fashion as we did for the Root embedding, by simulating path hits and determining the

distribution of the Rost hitting times. However, this proves to be a more difficult task

than for the Root barrier, due to the delicate asymptotic character of the barrier around

the initial value S0. To embed values in a neighbourhood of S0, the Rost barrier will have

to stop paths at times close zero where the barrier function is very steep. In this region,

small errors in the hitting time get amplified to larger errors in the embedded value, and

the accuracy of the path can have a significant impact on the results. For these reasons, we

extend our methodology for the Rost embedding in an attempt to improve the embedding

for small timescales.

Some straightforward ways to improve the asymptotics of the embedding include simply

using a finer mesh when solving the free boundary problem (to improve the accuracy of

the obtained Rost barrier), and choosing an appropriately short time step for the path

simulation.

Another method that could potentially improve the asymptotics is to apply a Brownian

bridge construction for the first few time steps. If the size of the time step ∆t is very small,

then Z is roughly constant over each interval, and so over an interval [tn, tn + ∆t) we could

approximate the dynamics of Z over [tn, tn + ∆t) by

dZt = ZtndWt, (4.30)

32



with Ztn constant, so that Z behaves like an arithmetic Brownian motion. Over each time

step [tn, tn+1] in the simulated path, we can then condition the value of Zθn at any intermedi-

ate time θn ∈ [tn, tn+1] on the boundary values Ztn and Ztn+1 , whereby Zθn becomes a Brow-

nian bridge. Using standard theory for Brownian bridges, we can sample from the distribu-

tion of the maximum M̂+,tn = supθ∈[tn,tn+1] Zθ and the minimum M̂−,tn = infθ∈[tn,tn+1] Zθ

of Z over this interval by using

M̂±,tn = 0.5

(
Ztn + Ztn+1 ±

√
(Ztn+1 − Ztn)2 − 2∆tZ2

tn log(U)

)
, (4.31)

where U ∼ U([0, 1]) (see e.g. formula (6.50) in Glasserman [29]). Unlike the case of a

barrier option, however, we have a non-constant barrier function. Nonetheless, when using

our Brownian bridge construction (here abbreviated as “BB”), we approximate the upper

part of the barrier over the interval [tn, tn+1] as being the (constant) cubic spline interpolated

barrier value at the midpoint (tn + tn+1)/2. We then compare the sampled maximum value

with this constant level, and if the maximum exceeds the barrier, we register a hit (at

the midpoint time). We do the same for the minimum and the lower part of the barrier.

Using the Brownian bridge theory that we have just outlined, we attempt to improve the

numerical accuracy of the Rost embedding for values around S0.

(c) Numerical results

The results for the Root embeddings are shown in Figure 4.4 for the Black-Scholes model,

and in Figure 4.5 for the Heston model. We used 50,000 paths each with 10,000 time steps

for the Root path hitting simulation, and 20,000 paths each with 100,000 time steps for the

Rost path hitting.

For the Root embedding results in the Black-Scholes case, our numerical results agree

well with what we expected from theory. In Figure 4.4a, we see that the numerically

determined Root barrier is indeed a constant, save for some slight curvature at very high

strikes due to limitations in numerical precision. In particular R(x) = σ2T = 0.08, so that

all the simulated geometric Brownian paths in Figure 4.4b are stopped at the same time 0.08.

As seen in Figure 4.4c, the stopped values follow the log-normal target distribution, and

the hitting times in the histogram in Figure 4.4d can be viewed as having (approximately)

a distribution of δ(x− σ2T ). Furthermore, the lower bound in this case coincides with the

“true price”, as seen in Figure 4.1.

For the Heston model that we implemented, the Root barrier is as in Figure 4.5a, which

has a less trivial shape than in the Black-Scholes case, and in Figure 4.5b we show simulated

geometric Brownian paths hitting the barrier. Once again, the embedding property of the

barrier becomes clear in Figure 4.5c, where we see that the stopped values do indeed follow

the Heston target distribution, and the distribution of the corresponding Root hitting times

is visualised in Figure 4.5d. This non-atomic distribution of stopping times gives rise to a

smoother lower bound profile than the piecewise linear (σ2T −Q)+, as seen in Figure 4.2.
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(a) Root barrier (b) Path hitting simulation

(c) Embedded vs target distribution (d) Distribution of hitting times

Figure 4.4: Root embedding for the data from the Black-Scholes model.

Moving on to the results for the Rost embedding, the Rost barriers together with simu-

lated paths are shown are shown in Figure 4.6a for the Black-Scholes model and in Figure

4.7a for the Heston model. Unlike the case for the Root barriers above, both models now

have non-trivial barrier functions, and we see that the magnitude of the slope of the barrier

becomes very large as we approach S0.

Simply simulating path hitting without any Brownian bridge constructions gives a dis-

tribution of stopped values as in Figure 4.6b for Black-Scholes and in Figure 4.7b for Heston.

We here clearly see the problems with embedding values in a neighbourhood of the initial

value. There is a clear gap around S0 for both models, which is a sign that not enough

stopping happens at earlier times, since paths that should have stopped at values close to

zero now survive and hit the barrier at later times.

Due to the fact that the obtained hitting times do not in fact embed the target dis-

tributions (Black-Scholes and Heston respectively) in the geometric Brownian motion, we

do not trust the reliability of the distribution of the hitting times for finding price bounds.

Thus, we are motivated to attempt to improve the accuracy of our embedding by using the

Brownian bridge construction described above. We apply sampling of the maximum and

minimum for the first 30 time steps of each path, working backwards in time in order to

successively update the first hitting time for each path. Note that this process may only

decrease the first hitting time, and thus by the monotonicity of the upper and lower halves
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(a) Root barrier (b) Path hitting simulation

(c) Embedded vs target distribution (d) Distribution of hitting times

Figure 4.5: Root embedding for the data from the Heston model.

of the barrier respectively, it can only move the stopped value for each path closer to S0.

The resulting distributions of the stopped values when using the Brownian bridge con-

struction for the first 30 time steps are shown in Figures 4.6c for Black-Scholes and 4.7c

for the Heston model. We see that the gap indeed gets closed, and instead we rather get

spikes at S0 surrounded on both sides by slightly lower densities than the target distribu-

tion. It is possible that our Brownian bridge construction is overcompensating the early

stopping. One plausible explanation for this phenomenon is that our assumption that we

may approximate the barrier by a constant over each interval is too strong, especially in

the first time step where the barrier has a very steep slope. For this reason, we decided

to also try implementing the Brownian bridge construction backwards in time only to the

second time step, so that we do not sample the maximum and minimum in the very first

interval. This instead yielded the embeddings in Figure 4.6d and 4.7d for Black-Scholes

and Heston respectively. We now see that although the gap appears to be not as closed as

before (especially for the Black-Scholes case), the spikes at S0 become less pronounced.

4.4 Comparison of numerical results

The first and most fundamental property that we verify from the Figures 4.1 and 4.2 is

that for both approaches, the bounds do enclose the true price of the variance call. If
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(a) Rost barrier with paths (b) Embedding without BB

(c) Embedding with BB from first time step (d) Embedding with BB from second time step

Figure 4.6: Rost embedding results for the data from the BS model for different uses of
our Brownian bridge construction (BB).

we have accurately determined the distribution of the Root and Rost stopping times for

the Black-Scholes and Heston models, then the Cox & Wang bound profiles that we have

obtained should be the optimal lower and upper bounds for the variance calls in each case.

More explicitly, the Cox & Wang lower bound should always be above the Carr & Lee lower

bound (possibly attaining equality), and vice versa for the Cox & Wang upper bound being

below the Carr & Lee upper bound.

This property indeed holds for the lower bounds in both the Black-Scholes and Heston

cases, where the lower bounds are equal for Black-Scholes, and the Cox & Wang bound is

marginally higher than the Carr & Lee bound for Heston. This confirms the findings of

Carr & Lee [7], where they compared their lower bound to the Root bound for a Heston

model calibrated using the same parameters as we used (albeit they used a time horizon of

T = 1 instead of T = 2 as we did). In both the Black-Scholes and Heston cases, the Carr

& Lee lower bounds are extremely close to the Cox & Wang lower bounds, meaning that

at least for the models that we have tested here, the Carr & Lee method provides a useful

approximation of the optimal lower bound on the no-arbitrage price of the variance calls.

For the upper bounds on the other hand, we find that only when using Brownian bridge

from the first step onward does the Cox & Wang upper bound actually lie below the Carr &

Lee upper bound. When omitting the first interval from the Brownian bridge construction,
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(a) Rost barrier with paths (b) Embedding without BB

(c) Embedding with BB from first time step (d) Embedding with BB from second time step

Figure 4.7: Rost embedding results for the data from the Heston model for different uses
of our Brownian bridge construction (BB).

the Cox & Wang upper bound exceeds that of Carr & Lee. An immediate explanation for

why we expect the upper bound to be lower in the case when we include the first time step

in the Brownian bridge construction than in the case when we start from the second time

step onward is that as we stop some paths earlier, the distribution of the stopping times

will shift to the left, in the sense that probability mass will be transported to smaller times.

This in turns causes the quantity E(τR − Q)+ to be lower for all Q, and we thus obtain a

decrease in the bound.

Assuming that the Carr & Lee upper bounds that we have obtained are in fact valid, the

Cox & Wang upper bounds when we start the Brownian bridge from the second time step are

obviously suboptimal, and they may be rejected. The Cox & Wang upper bounds when we

include the first time step in the Brownian bridge construction do satisfy the condition that

they lie below the Carr & Lee upper bounds, but note that this is only a necessary condition

for optimality and not a sufficient one. Since the distributions of the stopped values in the

Rost case still deviate noticeably from the target distribution even after our applying our

Brownian bridge method, we are not confident that we have accurately determined the

distribution of the Rost stopping times. An interesting observation is that when looking at

the (unadjusted) distributions of the stopped values, there seems to be a larger increase in

the density for values below S0 than for those above. This could be related to the fact that
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the Rost barriers for both Black-Scholes and Heston display a higher curvature for values

just below S0 than for values just above, and that this affects the impact of interpolation

errors and similar on the embedding for values smaller than S0. It is also possible that this

is explained by the fact that the density itself is the highest below S0, and that the lack of

embedding around S0 simply scales up the remaining density roughly equally.

For both models tested here, the true price is generally closer to the lower bound than

the upper bound, which agrees with the observations in Carr & Lee [7]. In the Heston case

we see that for very small strikes the true price almost coincides with the lower bound from

the Carr & Lee approach, and that they seem to approach each other asymptotically in

the limit Q → 0. This is reasonable, and has an intuitive explanation. The Carr & Lee

subhedging strategy is closely related to the strategy replicating a variance swap, where

slight modifications are made to further increase the lower bound on the variance call. In

the limit Q → 0, we have both that the variance call will behave as a variance swap, and

that the domain of integration in (3.7) will approach R+, so that we recover the strategy

replicating a variance swap. Thus, asymptotically, the Carr & Lee subhedging strategy will

replicate the variance call as the strike goes to zero, and the lower bound approaches the

true price.

In our implementation of the Carr & Lee approach, we need to numerically evaluate an

integral for each strike, which can be costly for high accuracies. For Cox & Wang on the

other hand, once we know the distribution of the hitting times, we can quickly determine

bounds for a very large number of strikes. Overall though, our Cox & Wang implementation

is more computationally demanding due to the necessity of high accuracy both when solving

the free boundary boundary problem and when simulating the path hits.

We would like to conclude our discussion here by mentioning some possible areas of

improvement and further investigation. Our methodology for determining the Rost bound

could be improved to ensure that we properly embed the target distribution. In addition to

our Brownian bridge construction, it is possible to e.g. use adaptive mesh refinement. This

allows for a much finer mesh size around S0, so that the computational effort is directed to

the critical region.

Another area that could be further explored is the behaviour at very small strikes, where

the precision of the numerics can significantly affect e.g. the implied volatilities obtained.

In a practical sense however, and based on our above arguments about the asymptotics as

Q → 0, it could also be possible to approximate the variance call by a variance swap for

extremely small strikes, and it is not clear how relevant calls at such small strikes are in

practice.

Moreover, it would be interesting to test the two approaches on actual market data

to see how well our findings for the Black-Scholes and Heston models extend to the real

world setting, although extra care would need to be taken to deal with some of the idealised

assumptions made here, e.g. the fact that we do not longer have a continuum of strikes
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available. For some results on the effects when only a finite number of strikes is traded, see

e.g. Bühler [5], Davis & Hobson [18], Cousot [11], and Davis et al. [17].

Optimisation of the parameters bd, bu in the Carr & Lee superhedging can also be

investigated, although in both our findings and those of Carr & Lee [7], the upper Carr &

Lee bound appears relatively close to the Rost bound.

39



Chapter 5. Conclusions

We have compared the approaches by Carr & Lee [7] and Cox & Wang [12,13] for bounding

the no-arbitrage price of variance calls. We did this first from a theoretical viewpoint, and

especially in the light of Remark 5.4 in Cox & Wang [13] for the connection between the sub-

hedging strategies of the two approaches. This was followed by numerical implementation

of the approaches, and their performance was tested on simulated data.

We showed Proposition 3.8 that the Carr & Lee subhedging strategy perfectly replicates

variance calls when the price process is a martingale with a log-normal target distribution.

Furthermore, when using a constant barrier function instead of the Root barrier function in

the Cox & Wang subhedging strategy, we proved Theorem 3.9 that the strategy reduces to

Carr & Lee subhedging. This confirms and motivates Remark 5.4 made in Cox & Wang [13].

Furthermore, for the numerical implementation we confirmed the expectations from

theory that both the Carr & Lee and Cox & Wang lower bounds coincide with the true

price in the case of the Black-Scholes model. Moreover, the Carr & Lee lower bound was

very close to that of Cox & Wang also for the Heston model we implemented. This suggests

that Carr & Lee subhedging could be a useful and straightforward approximation of the

optimal robust subhedging strategy by Cox & Wang, especially for practitioners due to its

relatively simple hedging strategy and for its less computationally demanding method of

determining price bounds. The upper bounds proved to be more difficult to determine in the

Cox & Wang case, where the asymptotic character of the Rost barrier made simulation of

path hitting even more challenging. Simply simulating paths and registering barrier hits did

not result in a proper embedding of the target distribution, and so we tried improving our

results by using a Brownian bridge construction. Although this did improve the embedding,

we believe that there is still room for further improvements.

Possible areas of future work include testing the approaches on real-world data, improv-

ing the Rost embedding (e.g. by using adaptive mesh refinement when determining the

barrier), optimising the parameters for the Carr & Lee superhedging to lower the upper

bound, and investigating how limitations on the numerical precision affect the results in the

domain of very small and very large strikes.
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